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Abstract--Slug flow forced convection in a circular duct is studied. The effect of viscous dissipation is 
analysed in tile thermal entrance region. The temperature field and the local Nusselt number are determined 
analytically tbr any prescribed axial distribution of wall heat flux. Three examples are considered: a 
uniform wall heat flux, a linearly varying wall heat flux and an exponentially varying wall heat flux. In the 
case of a uniform wall heat flux, it is shown that viscous dissipation reduces the value of the local Nusselt 
number in the whole duct. In the case of a linearly or exponentially increasing wall heat flux, viscous 
dissipation affects the local Nusselt number only in the thermal entrance region and becomes negligible in 

the fully developed region. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

In a previous paper [1], an analysis of the thermally 
developed forced convection in a circular duct with 
slug flow has been performed by taking into account 
the effect of viscous dissipation in the fluid. In ref. [1], 
a viscous dissipation of energy distributed as a Dirac's 
delta centered next to the wall is assumed. By this 
model, it is shown that the fully developed value of 
the Nusselt number is zero for any axial distribution 
of wall heat flux which tends to zero, when the distance 
x from the inlet section tends to infinity. Moreover, it 
is proved that the rally developed value of the Nusselt 
number depends only on the limits of the wall heat 
flux qw(x) and of Iil/q,,,(x)][dq,~(x)/dx] for x-~ + ~ .  
The aim of this paper is to extend the analysis per- 
formed in ref. [1] by evaluating the temperature field 
and the local Nuss,:lt number in the thermal entrance 
region for an arbitrary axial distribution of wall heat 
flux. 

In the literature, slug flow forced convection in 
ducts has been studied with reference either to tur- 
bulent flow, or to laminar flow in the hydrodynamic 
entrance region of a Newtonian fluid with a very small 
value of the Prandd number, or to the fully developed 
laminar flow of a pseudoplastic fluid with a negligible 
power-law index. Moreover, slug flow forced con- 
vection can describe a solid rod moving, with good 
thermal contact, through a heated sleeve. Some of the 
most important results found in the literature have 
been reviewed by Shah and Bhatti [2]. For instance, 
the thermal entrance region has been studied by Golos 
[3] and by Tyagi a.nd Nigam [4]. Both in ref. [3] and 
in ref. [4] a boundary condition of convective heat 
transfer with an external isothermal fluid is considered 

and approximate analytical solutions are found either 
by the principle of restricted variation [3] or by Galer- 
kin's technique [4]. The effect of axial heat conduction 
both in the wall and in the fluid has been taken into 
account by Soliman [5]. However, the effect of viscous 
dissipation has been always considered as negligible 
by these authors. On the other hand, viscous dis- 
sipation can not only modify the fully developed value 
of the Nusselt number, as it has been shown in ref. 
[1], but can be very important in the thermal entrance 
region for almost all axial distributions of wall heat 
flux, as it is shown in the present paper. 

MATHEMATICAL MODEL 

In this section, the boundary value problem which 
describes slug flow forced convection with viscous dis- 
sipation in a circular duct is outlined. Then, the prob- 
lem is written in a dimensionless form and relevant 
dimensionless parameters are determined. 

Let us consider slug flow within a circular duct with 
radius r0. The axial component of the fluid velocity is 
uniform with value u0 within the duct and is zero at 
the wall. The thermal conductivity and the thermal 
diffusivity of the fluid are considered to be inde- 
pendent of temperature. The axial heat conduction in 
the fluid and in the wall are considered as negligible. 
Since the effect of viscosity is restricted to an infini- 
tesimal layer adjacent to the wall, the power generated 
per unit volume by viscous dissipation can be expre- 
ssed by a Dirac's delta distribution centered next to 
the wall, i.e. 

~ ( r )  = ~ o 6 ( r -  ro). (1) 
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NOMENCLATURE 

a, b arbitrary real numbers employed in 
equation (A9) 

A dimensionless function of ¢ and co 
defined by equation (26) 

a0, a, dimensionless coefficients defined by 
equation (A2) 

Br Brinkman number, defined by 
equation (7) 

F dimensionless function of x which 
appears in equation (3) 

g arbitrary dimensionless function of q 
emplo~d  in the Appendix 

i = ~ / -  1, imaginary unit 
L modified Bessel function of first kind 

and order v 
J,. Bessel function of first kind and order v 
k thermal conductivity of the fluid 

[W (m ' K -  ~)1 
L* dimensionless thermal entry length 
n arbitrary non-negative integer number 
Nu, Nu(~) = 2roqw/[k(Tw- Tb)], Nusselt 

number ; local Nusselt number 
p dimensionless axial coordinate in the 

Laplace transformed domain 
Pe Peclet number, defined by equation (7) 
qw wall heat flux [W m -2] 
q0 uniform value of the wall heat flux 

[W m -~] 
r radial coordinate [m] 
ro radius of the duct [m] 
Re real part of a complex number 
Res(;) residue of a function at a pole 
T temperature [K] 
To inlet temperature [K] 
u0 uniform value of the axial component 

of the fluid velocity [m s-l]  
axial coordinate [m] 
arbitary function of r and x employed 
in equation (30) 
arbitrary real variable. 

X 

X 

Greek symbols 
thermal diffusivity of the fluid [m 2 s 1] 

fl dimensionless coefficient employed for 
exponentially varying wall heat 
fluxes 

7 dimensionless constant employed in 
equation (17) 

6 Dirac's delta distribution 
r/ dimensionless radial coordinate 

defined by equation (7) 
~9 dimensionless temperature defined by 

equation (7) 
o% function of r/and ~ defined by 

equations (15) and (17) 
2, nth root of the equation Jl(Y) = 0 
# dynamic viscosity coefficient [Pa s] 

dimensionless axial coordinate defined 
by equation (7) 

p mass density [kg m -3] 
a dimensionless function of ~ and fl 

defined by equation (52) 
~o dimensionless function of ~ defined by 

equation (37) 
~bo constant employed in equation (1) 

[Wm J] 
viscous dissipation function [s 2] 

X dimensionless function of ~ defined by 
equation (44) 
dimensionless function of ~ defined by 
equation (7) 

co real variable employed in equation 
(26). 

Superscript and subscripts 
Laplace transformed function 

' dummy integration variable 
b bulk value, defined by equation (30) 
w value at the wall. 

In equation (1), ~b 0 is a constant which depends on the 
radius of the duct and on the thermodynamic state of 
the fluid, while 6(r-ro)  is Dirac's delta distribution 
and is such that the integral of 2 n r f ( r - % )  in the 
interval [0, ro] is equal to one. If the axial distribution 
of wall heat flux is prescribed and a uniform inlet 
temperature distribution is assumed, the temperature 
field is determined by the boundary value problem 

"°°T (2) 
r Or\ & J  ~ Ox 

k °r O~r~o Or . . . .  = qoF(x) ; = 0 (3) 

T(r, O) = To. (4) 

An equivalent mathematical representation of equa- 
tions (2) and (3), given in ref. [1], is 

1 ~(rOT']= Uo ~T 
r Or\ Or J ~ Ox (5) 

/cOT q~o 0rrTrTr~0 Or ~-,o = qoF(x)+ 2nr0' = 0. (6) 

Equations (4)-(6) can be written in a dimensionless 
form by employing the dimensionless quantities 
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T -  To r x 2u0r0 
` 9 = k  ; r / = - - ;  ~ =  • P e = - -  

q0r0 r0 2r0Pe' 

00 Br - ; tF(4) = F(2roPe~). (7) 
27rroqo 

Equations (4)-(7) yield 

1 c~[ 0`9~ 1(3`9 (8) 

0`9 = °d(~) + Br ; 0,9 = 0 (9) 

`9(r/, 0) = 0. (10) 

Equations (8)-(10) show that the dimensionless tem- 
perature depends o:a the dimensionless parameter Br, 
as well as on any dimensionless parameter which may 
appear in function ~d(4). 

EVALUATION OF THE TEMPERATURE FIELD 

In this section, equations (8)-(10) are solved by the 
Laplace transform method for an arbitrary function 
W(~). The Laplace transform of the dimensionless 
temperature field with respect to the dimensionless 
coordinate 4 is given by 

g(q,P) = e-Pe`9(q, 4) d~. (11) 

On account of the properties of Laplace transforms 
[6], equations (8), (10) and (11) yield 

while equation (9) yields 

0~.] ~ Br O_~q ..o - ~ ( p ) +  p ;  = 0. (13) 

On account of the properties of modified Bessel func- 
tions [7], the solution of equations (12) and (13) can 
be expressed as 

0(q'P) =II~(P)+-~t~pp!2--~q( 2 ~ ) ) ' 2  "' (14) 

If one denotes by ~io(q,p) the function 

.0(4.) 
~0f~ ,p)  - (15) 

on account of the convolution theorem for Laplace 
transforms [6], equation (14) yields 

,9(q, ~) = [W(~') + Br]`90 (r/, ¢ - 4 ' ) d e ' .  (16) 

Function `9o(r/, 4) can be evaluated by the inversion 
formula for Laplace transforms [6] 

`90(~,~) = 2niL_~ ~ C¢O0(q,P) dP (17) 

where 7 is any real number such that all singularities 
of the function ~o(q,P) lie in the complex p plane to 
the left of the line Re{p} = 7. Although )0(~/,P) has 
no branch point, equation (15) reveals that this func- 
tion has infinite simple poles for p = - 4 2 .  z where, as 
a consequence of the identity [7] 

I(4) 
{2n} is the sequence of roots of the equation Y~(y) = 0. 
The lower root of this equation is y = 2o = 0. The 
integral on the right hand side of equation (17) can 
be evaluated by a contour integration of eP~,90(~,p) on 
a semicircular closed path which lies to the left of the 
line Re{p} = 7 and centered at p = 7 [6]. Then, one 
lets the radius of the semicircular path tend to infinity 
and on account of Cauchy's residue theorem, equation 
(17) can be rewritten as 

8o(rl, ~) = ~ Res(C¢~oOl,P) ; 
n=O 

p = -42.2). 

(19) 

As a consequence of the properties of Bessel func- 
tions [7], the residues which appear in equation (19) 
can be expressed, for n = 0, as 

Res(C~go(¢,p) ; p = --422) = 8 (20) 

while, for n > 0, as 

Res(e~o(~ ,P)  ; P = --422) 

= 16e-,~.:~ J0 (2.q) 
J 0 ( 2 . ) - J 2 ( 2 . )  (21) 

On account of the identity [7] 

J2 (Y) = ~ Jl (Y) - J0 (Y) (22) 

one obtains J 2 ( J , n )  = --Jo();n), SO that equation (21) 
can be rewritten as 

Res(eP,~o(~,p) ; P = _422) = 8e_4~: J0(2.r/) 
J0 (,L) ' 

(23) 

Equations (19), (20) and (23) yield 

00(,, ¢) = 8 I1 + 
. = l go  ( , L )  _1" 

(24) 
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By substituting equation (24) in equation (16), one 
obtains 

0(7, ~) = 8[A(~, 0) + ~Br] 

+ 8,-~, [ A(~' 4)'~) + B r  (l - e 4 x " ~ ) ~ 4 2 ~  / ao t~t,) (25) 

where function A (¢, co) is defined as 

A(¢, ~o) = e o~¢ e'~¢'ud(~ ') d~'. (26) 
do 

As it is proved in the Appendix,  the identity 

1 ~ J0 (2,7) (27) 
7 2 - 2 = 4  2 l= .~2Jo(~,, ) 

holds, so that  equation (25) can be rewritten as 

Br[ 2 
~9(7, ~) = 8[A(~, O) + ~Br] + ~ 7  -- ~) 

+ 8  ~ A ( ~ , 4 , ~ ) -  Br_ 4~(1Jo(,~°7) , ~ e  ° j  J~(2~" (28) 

THE LOCAL NUSSELT NUMBER 

In this section, equation (28) is employed to deter- 
mine the local Nusselt number  for an arbi trary func- 
tion tp(~). On account of  equations (3) and (7), the 
local Nusselt number  can be evaluated as 

2r0 qoF(x) 2~(~)  
N u ( ~ ) =  k Tw(X)--Tb(x)--0w(~)--t,Qb(~) (29) 

where the bulk value of  an arbi trary function X(r, x) 
is defined as 

= 2 Iro X(r', x)r' dr'. (30) 
Xb(X) r 2 J0 

On account of equations (9) and (30), an integration 
of both sides of equation (8) with respect to 7 in the 
interval [0, 1] yields 

d0u(~) 
- 8 [ ~ ( ¢ )  +Br]. (31) 

d~ 

Since equations (10) and (30) ensure that  Oab(0) = 0, by 
integrating equation (31) and by employing equation 
(26), one obtains 

~b(~) = 8[A(~, 0) + ~Br]. (32) 

Then, on account of  equations (28), (29) and (32), the 
local Nusselt number can be expressed as 

8q'(~) 
ov • 

Nu(~) Br+32 ~_,[A(g,,422)_ Bre_4~422 J 

(33) 

UNIFORM WALL HEAT FLUX 

In this section, equations (28) and (33) are 
employed in the case of a uniform wall heat flux, i.e. 
in the case W(~) = 1. If the wall heat flux is uniform, 
equation (26) yields 

f 
~, ~o = 0 

A(~,o)) = 1--e  - ' ~  (34) 
co , 0 9 # 0 .  

On account of equations (27), (28) and (34), '9(7, ~) is 
given by 

,9(r/, ~) = 8(1 +Br) 

1 2 Jo (/~n 7)  -- 4.t2: 
× [ 4 +  1 6 ( 7 - 1 ' ]  1 ~ ~ j - -  ~.=~, 22j0(2. ) e  ] .  (35) 

Moreover,  equations (27) and (33) yield 

8 
Nu(~) = [ ~o e 4~.~¢\" (36) 

(, +  r)l l -8  L 

In the case Br = 0, equations (35) and (36) coincide 
with the corresponding expressions of  oa(7, ~) and of  
Nu(~) reported in Shah and Bhatti [2]. Let us define 
function ~p(~) as 

q~(~) = 2 (37) 
n= I /~n 

Values of  function ~p(~) are reported in Table 1. On 
account of  equation (37), equation (36) can be rewrit- 
ten as 

8 
Nu(¢) = (38) 

(1 + B r ) [ 1 -  8¢p(~)1" 

Equations (27) and (37) ensure that  ~o(0) = 1/8, so 
that  the local Nusselt  number  becomes singular at the 
inlet section for any value of  Br. Moreover,  in the 
limit ~ --, + m,  ~0(~) tends to zero and equation (38) 
reveals that  the fully developed value of  the Nusselt 
number  is 8 / ( l + B r )  as found in ref. [1]. Equation 
(38) shows that, if q0 > 0, the local Nusselt  number is 
a decreasing function of Br. On the other hand, if 
Br = -- 1, for every value of  ~ the local Nusselt num- 
ber is singular and, as a consequence of equation (35), 
S(7, ~) = 0 at every point. Indeed, when Br = -- 1, the 
wall is cooled so that  all the heat generated by viscous 
dissipation is subtracted to the fluid. Therefore, for 
every value of  x, the fluid temperature profile is the 
same as at the inlet section, i.e. it is uniform with value 
To. 

In Fig. 1, three plots of  Nu(~) for Br = O, Br = 1 
and Br = 10 are reported. This figure shows that  the 
effect of viscous dissipation in the thermal entrance 
region is relevant especially for low values of  ~. As 
usual, the dimensionless thermal entry length L* is 
defined as the value of  ~ such that  Nu(~) is equal to 
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Table 1. Values of ~(O, X(¢), a((, 10) and tr(¢, - 10) 

1185 

~(~) x 10 X(~) x 1000 o(~,lO) x 100 a(~,- lO)  x 100 

0.00000 t.25000 5.20833 5.25345 8.16420 
0.00001 1.21462 5.20343 5.07757 7.98568 
0.00005 1.17171 5.18438 4.86699 7.76484 
0.00010 1.14015 5.16128 4.71399 7.59938 
0.00050 1.01256 4.99049 4.11097 6.90376 
0.00100 0.92280 4.79755 3.70111 6.38868 
0.00500 0.59770 3.62565 2.30546 4.34597 
0.01000 0.40854 2.63773 1.54838 3.03669 
0.02000 0.21442 1.44134 0.80297 1.61770 
0.03000 0.11752 0.79779 0.43877 0.88993 
0.04000 0.06509 0.44297 0.24284 0.49337 
0.05000 0.03615 0.24616 0.13483 0.27406 
0.06000 0.02009 0.13681 0.07493 0.15231 
0.07000 0.01117 0.07604 0.04164 0.08465 
0.08000 0.00621 0.04227 0.02315 0.04705 
0.09000 0.00345 0.02349 0.01287 0.02615 
0.10000 0.00192 0.01306 0.00715 0.01454 
0.50000 0.00000 0.00000 0.00000 0.00000 
oo 0.00000 0.00000 0.00000 0.00000 

50 

40 

30 

2O 

10 

0 

~ ~  (a) Br=o 
7, ;:::o 

8/11 

-5 -4 -3 -2 - I 0 
Loglo 

Fig. 1. Local Nusselt number vs ~ for a uniform wall heat 
flux. 

1.05 times its fully de, veloped value [8]. For  every value 
of Br, one obtains L* = 0.04135. This value of L* is 
in fair agreement with that reported in Shah and 
Bhatti [2] for the case Br = 0. It  is easily shown that 
the following relevant difference occurs between for- 
ced convection witla viscous dissipation in Hagen-- 
Pouiseuille flow anti forced convection with viscous 
dissipation in slug flow. Ou and Cheng [9] have shown 
that in the thermal entrance region of the forced con- 
vection with viscoas dissipation and Hagen-Pou-  
iseuille flow there exists, in the case of uniform wall 
heat flux with Br < - 11/48, an axial position where 
the local Nusselt number  becomes singular. Such 
singularities do not  occur in the case of slug flow. In 
fact, if  Br # - l ,  ectuation (38) ensures that a singu- 
larity of Nu(~) can occur only for a value of  ~ such 
that tp(~) = 1/8. Table 1 shows that the only value of 
¢ such that tp(~) = 1/8 is ~ = 0. 

LINEARLY VARYING WALL HEAT FLUX 

In this section, equations (28) and (33) are 
employed in the case of a linearly varying wall heat 

flux, i.e. in the case q~(~) = ~. If the wall heat flux is 
linearly varying, equation (26) yields 

~-, o~=O 

A(~,o~) = e - ' ~ + _ ~ ¢ -  1 (39) 

L c°2 , ~o~0 .  

On account of equations (27), (28) and (39), ,9(~/, 3) is 
given by 

9(r/,¢) = 8 ( ~  + ¢ B r ) +  (Br2~)Q12--~) 

°° I (  1~2 --Br) e-4x~¢- l ~2 + 2.~ ,  ~ . (40) 
42. ]A~Jo (2.) 

As it is proved in the Appendix, the identity 

2 ~ J° ()"r/) (41) ~/4 _2r/2 + 3 = __64n~ J 
2~J0(2.) 

holds, so that equation (40) can be rewritten as 

2\ ~ / 1 Br) 
/ 

J o  ( 2 . r / )  e _  4.~2 ¢ x ~ , .  (42) 

Moreover, equations (27), (33) and (41) yield 

8¢ 
Nu(~) = = l Xxe-4'~2 ¢ . (43) 

Let us define function Z(O as 



1186 A. BARLETTA and E. ZANCHINI 

oo z(¢) = ~=~ ~ (44) 
Values of function X(~) are reported in Table 1. On 
account of equations (37) and (44), equation (43) can 
be rewritten as 

8~ 
Nu(¢) = ~ + Br-~6 + 2X(~) - 8Brq~ (~)" (45) 

Equations (41) and (44) ensure that X(0)=  1/192. 
Therefore, by employing equations (37), (44) and 
(45), it can be easily proved that, for Br = 0, the local 
Nusselt number  becomes singular at the inlet section, 
while, for Br ~ O, the local Nusselt number  tends to 
zero at the inlet section. Moreover, in the limit ~ 
+ oo, ~o(¢) tends to zero and equation (45) reveals 

that the fully developed value of the Nusselt number  
is 8 as found in ref. [1]. 

In Fig. 2, three plots of Nu(¢) for Br = O. 1, Br = 1 
and Br = 10 are reported. This figure shows how the 
thermal entrance region increases its length as Br 
increases. In Fig. 3, the behaviour of Nu(~) for nega- 
tive values of Br is represented. A relevant feature of 
the plots reported in Fig. 3 is that Nu(¢) presents a 
singularity whose position depends on the value of  Br. 
For  Br = --0.1, the local Nusselt number  is singular 
at ~ = 0 . 1 1 0 4 ;  for B r = - 1  the singularity is at 

= 1.0104, while, for Br = - 1 0 ,  Nu(~) presents a 

singularity at ~ = 10.0104. As it can be inferred from 
the values reported in Table 1 and from equation (45), 
for Br ~< - 0 . 5 ,  the position of  the singularity is given, 
with excellent accuracy, by ( -- - B r +  1/96. In Fig. 4, 
three plots of Nu(~) for Br = 0, Br = l0 4 and Br = 
10 -3 are reported. These plots show that even a very 
small value of Br yields a thermal entrance region 
different from that which corresponds to Br = 0. In 
particular, for Br = 10 -3 and for Br = 10 -4, the local 
Nusselt number reaches a maximum at ~ = 1.7905 x 10 -3 
and at ~ = 1.5849 × t0 -4, respectively. The dimen- 
sionless thermal entry length, in the case Br = 0, is 
given by L* = 0.21881. 

In Fig. 5, plots of ~ -  ~ vs ~/for Br = - 1 and for 
= 0.5, ~ = 1.0104 and ~ = 1.5 are presented. This 

figure reveals that at the axial position ~ = 1.0104, 
which corresponds to a singularity of Nu(~), the tem- 
perature is almost uniform, while the slope of the 
temperature profile at r = r0 undergoes a change of 
sign. Indeed, when Nu(~) becomes singular, the bulk 
value of ~ - - ~  vanishes. The circumstance is some- 
what similar to that which is pointed out by Ou and 
Cheng [9] in the case of a Hagen-Pouiseuille flow with 
uniform wall heat flux. These authors point  out that 
such singularities occur when there exists an axial 
position where Tw = Tb. By moving in the axial direc- 
tion and crossing the position where T~ = Tb, the sign 
of Tw-T~, changes, while that of  qw remains 
unchanged. As a consequence, the definition of Nus- 
selt number  implies that Nu(~) also undergoes a sign 

8 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 0 (  . . . . . . .  

6 a~ so ~ [ca~ s~=0 
i ~ 60 \ [ (b) Br=10 "4 0  100 

-4 2 0 2 4 
LOgl0 ~ 0 

Fig. 2. Local Nusselt number vs ~ for a linearly varying wall 
heat flux. 

! !\(a ! \(bl 

:~ ° l[ . ~ ~  ........................ 
{a) B r  = - O. 1 

-10~ (b) B r  = - 1 

(c) B r  = -  l O 

-20 , -4 -2 2 4 
L°glo 

Fig. 3. Local Nusselt number vs ~ for a linearly varying wall 
heat flux. 

-6  -5 -4 -3 -2 -1 0 

L°gl0 
Fig. 4. Local Nusselt number vs ~ for a linearly varying wall 

heat flux. 

0. 

I ( ~ = L O I 0 4  

41.1 

-0.2 ~ = 1.5 / 

0 0.2 0.4 0.6 0.8 l 

Fig. 5 .0-0w vs ~/for a linearly varying wall heat flux and 
Br = - 1. 
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change and, at the position where T~ = Tb, becomes 
singular. Singular points of Nu(¢) have also been 
revealed in the case of uniform wall temperature by 
Ou and Cheng [10], for a Hagen-Pouiseuille flow with 
viscous dissipation and by Lawal and Mujumdar [11] 
for the laminar flow of a power-law fluid with viscous 
dissipation. Moreover, singularities of the local Nus- 
selt number have been revealed by Lin et al. [12] for 
a Hagen-Pouiseuille flow with viscous dissipation and 
external convection with an isothermal fluid. 

2 
Is (y) = 10 (y) -- ; I, (y) 

and of equations (27), (33), (49), one obtains 

Nu(~) = 8e:a, Br+4/~ I~(~/~) _ _ e 2 # ~  

(50) 

EXPONENTIALLY VARYING WALL HEAT FLUX 

In this section, the dimensionless temperature field 
and the local Nusselt number are analysed in the case 
of an exponentially varying wall heat flux, i.e. in the 
case qJ(~) = e TM. If  the wall heat flux is exponentially 
varying, equation (26) yields 

e 2M - e-'°¢ 
A (¢, c o )  - - -  (46) 

~o+2/~ 

On account of equations (28) and (46), 0 (r/, ~) is given 
by 

e TM -- 1 
,9(r/, ~ )=  8 [ ~ f f - - + , B r ] +  Brf2 

+4  ~./.-q5-7, - -  + e -4'~-2~ 
. - ,  L22. + fl 

- I  

oo [ Br 1 \ 4~ 2 
- - 1 6 Z ( ~ 2  + ~ | e -  .¢ (51) 

_ 22. + fl] 

Let us define function a(~, fl) as 

e- 4z.~¢ 
~(¢,/~) = Z (52) 

22, 2 n=l  + 

Values of the functions a(¢, 10) and a ( ~ , -  10) are 
reported in Table 1. On account of equations (37) and 
(52), equation (51) can be rewritten as 

Nu(O = 8e TM B r + 4 / ~ - - e  TM 
' qp  

--1 

Jo (2.  ~) 
x - -  (47) 

Jo (2 . )  " 

As is proved in the Appendix, the identity 

= 2 w / ~ I '  , ( 222 + fl)Jo (2.) 

holds, so that equation (47) can be rewritten as 

re 2M- 1 + ~ B r ] +  Brf 2 =SLy- 

e2M 

/ Br I ~ e- 4~,~ 
- - 4 . ~ ,  ~ - j ~  + 222 + f l]  Jo(2~) ' 

(49) 

On account of the identity [7] 

-- 8Brq~(~) -- 16a(~, fl) (53) 

On account of equations (48), (50) and (52), one 
obtains 

Since ~o(0) = 1/8, as a consequence of equation 
(54), the local Nusselt number becomes singular at 
the inlet section for any value of Br. Moreover, in the 
limit ~ ~ + oe, both ~0(O and e(~, fl) tend to zero and 
equation (53) reveals that, iffl > 0, the fully developed 
value of the Nusselt number is given by 

Lim Nu(~) = x / ~ - - -  (55) 

as found in ref. [1]. On the other hand, if fl < 0, 
equation (53) ensures that the fully developed value 
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of the Nusselt number  is zero both in the case Br ~ 0 
and in the case Br = 0 with fl ~< 22~ = - 2 9 . 3 6 4 .  
Finally, i fBr = 0 and - 222 < fl < 0, the fully developed 
value of the Nusselt number  is given by 

Lira Nu(~) --- 2 x / ~  - - .  (56) 

However, it should be noted that, i fBr  = 0 and fl ~< - 
22~, the fully developed value of Nu(~) depends on 
the choice of the inlet temperature profile. If  the 
dimensionless inlet temperature profile is uniform, the 
fully developed value of Nu(O is zero, as it has been 
pointed out above. On the other hand, as is proved in 
ref. [1], if the dimensionless inlet temperature profile 
is given by 

.,f /N~ 
4 f f  0 ~ / ~ - ~ - J  

0(,, o) = ~ +x/N ~ (57) 

\q 2/ 
the fully developed value of Nu(~) is still given by 
equation (56). However, in ref. [1] it has been pointed 
out that, for every wall heat flux which tends to zero 
for ~ ~ ÷ oo, viscous dissipation cannot  be neglected 
in the thermally developed region. Therefore, in the 
case of an exponentially varying wall heat flux with 
Br = 0 and fl ~< -22~ ,  the dependence of  the fully 
developed value of Nu(~) on the inlet temperature 
profile has no physical relevance. 

In Fig. 6, four plots of Nu(~) for Br = O, Br = 1, 
Br = 10 and Br = 100 are reported in the case fl = 10. 
If fl = 10, the dimensionless thermal entry length for 
Br = 0 is L* = 0.02935, while on account of equation 
(55), the fully developed value of Nu(¢) is 9.51755. 
Figure 6 shows that, for Br = 1, Br = 10 and Br = 
100, Nu(~) is a decreasing function for low values of 
(, then it reaches a min imum and starts to increase 
towards its fully developed value. 
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Fig. 7. Local Nusselt number vs ~ for an exponentially vary- 
ing wall heat flux and fl = 10. 

In Fig. 7, the behaviour of Nu(~) for fl = 10 and 
negative values of Br is represented. Figure 7 shows 
that, for Br = --10, Nu(¢) presents a singularity at 

= 0.12385. It is easily verified that a singularity is 
present in the thermal entrance region if Br < - 1 .  
The axial position where Nu(~) is singular, is more 
and more distant from the inlet section as Br increases. 
Indeed, if Br < - 1 ,  equation (31) shows that, for 
0 < ~ < lnlBrl/(2~), ~gb(~) is a decreasing function. 
Since ~b(0) = 0 ,  one can conclude that, for 
0 < ~ < lnlBrl/(2fl), Ob(¢) is negative. Then, Oh(C) 
reaches a min imum at ~ = lnlBrl/(2B) and, for 

> lnlBd/(2fl), increases. Indeed, Fig. 8 presents the 
behaviour of oab(~) and ~w(~) for f l =  10 and 
Br = - 10. This figure shows that, for ¢ < 0.12385, 
Ob(~) is greater than ~gw(~ ), while the reverse is true 
for ~ > 0.12385. As stated above, ~ = 0.12385 is the 
position where Nu(~) is singular. Let us point out that 
the value of ~ which yields the singularity is slightly 
greater than that which yields the min imum of 9b(~), 
i.e. ~ = (ln10)/20 = 0.11513. 

In Fig. 9, three plots of Nu(~) for Br = O, Br = 1 
and Br = 10 are reported in the case fl = - 10. These 
plots represent the strong difference between the cases 
Br = 0 and Br :~ O. If  Br---0,  the fully developed 
value of Nu(¢) can be evaluated by equation (56) and 
is given by 6.12430. If  Br v~ O, the fully developed 
value of Nu(~) is zero. In the case Br = 0, the dimen- 
sionless thermal entry length is L* = 0.06554. 

3(~ 
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1Q 
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Fig. 6. Local Nusselt number vs ~ for an exponentially vary- 
ing wall heat flux and fl = 10. 
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Fig. 8. ~b and ~w vs ~ for an exponentially varying wall heat 
flux with fl = 10 and Br = - 10. 



Forced convection in a circular duct 1189 

121 . . . . .  
-5 -4 -3 -2 -1 

Logl0~ 

Fig. 9. Local Nusselt number vs ~ for an exponentially vary- 
ing wall heat flux and fl = - 10. 

CONCLUSIONS 

Slug flow forced convection in the thermal entrance 
region of  a circular duct with an arbitrary axial dis- 
tribution of  wall heat flux has been studied by taking 
into account the effect of  viscous dissipation. The 
dimensionless temperature field and the local Nusselt 
number have been evaluated analytically by con- 
sidering a uniform inlet temperature profile. In par- 
ticular, three examples have been analysed: uniform 
wall heat flux, linearly varying wall heat flux and expo- 
nentially varying wall heat flux. 

For  uniform wall heat flux, it has been shown that 
the local Nusselt number in the thermal entrance 
region is given by 1/(1 +Br)  times the local Nusselt 
number in the theimal  entrance region of  a non-dis- 
sipating fluid. Moreover,  unlike the case of  Hagen -  
Pouiseuille flow, no singularity of  the local Nusselt 
number occurs in the thermal entrance region for 
negative values of  Br, except for Br = - 1. Indeed, in 
the case Br = - 1  the temperature profile at every 
axial position is uniform and coincides with the inlet 
temperature profile, so that the local Nusselt number 
is singular at any axial position. 

For  a linearly varying wall heat flux, it has been 
pointed out that viscous dissipation strongly affects 
the thermal entrance region even for very small values 
of  Br. For  negatwe values of  Br, there exists an axial 
position where Nu(~) is singular. The singularity cor- 
responds to an axial position where Tw = Tb and the 
wall heat flux is nc,n-vanishing. 

For  an exponentially increasing wall heat flux with 
a positive value of  Br, viscous dissipation affects the 
thermal entrance region by producing a minimum of  
Nu(~), so that the fully developed value of  the Nusselt 
number is reached from below. For  negative values of  
Br, singularities of  Nu(¢) occur only if Br < - 1 : the 
value of  ~ which corresponds to a singularity of  Nu 
increases with I Br[. As in the case of  a linearly varying 
wall heat flux, this singularity occurs at an axial pos- 
ition where Tw = Tb and the wall heat flux is non- 
vanishing. If  the wall heat flux is exponentially 
decreasing, a sharp distinction occurs between the case 
of  a non-dissipating fluid and that of  a dissipating 

fluid. In the first case, the fully developed value of  
Nu(~) depends on fl, while, in the second case, the 
fully developed value of  Nu(~) is zero. 
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APPENDIX 

A function g(~/) can be expanded by a series of Bessel 
functions. In particular, the following relation holds [7] 

g(q) = ao + ~ aoJo(2,q) (A1) 
n - I  

where 2, is the nth root of Jl(y) = 0, while a0 and a, are given 
by 

; 2 ;  
a0 = 2 qg(q)dq; a, - - -  rlg(rl)Jo(2,rl)drl. 

[J0(~,)] 2 

(A2) 

Let us consider the expansion of g(q) = r/2. Equation (A2) 
can be rewritten as 
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a0 = ~; a. = 24[Jo(2.)] 2 y3Jo(y) dy. (A3) 

On account of  the identity [7] 

~y3J o (y) dy = (y3 _ 4y)i~ (y) + 2yZJo (y) (A4) 

equations (A 1) and (A3) yield 

2 1 , ~ Jo(2.r/) 
n - ~ = 4 2 .  ~ .  (AS)  

,=1 2, Jo (2.) 

Let us consider the expansion of g(q) = q4 Equation (A2) 
can be rewritten as 

1 2 "YSJo (Y) dy.  (A6) 
a 0 = 5 ;  a. '12[Jo('~.)] ~ 

On account of  the identity [7] 

~Y'Jo(Y) dy = (yS _ 16y3 + 64y)J, (y) + 4 ( y  4 - 8y2)Jo(y) 

(A7) 

equations (A1), (A5) and (A6) yield 

4 2 2 . .  ~ Jo(2.r/) 
q - 2 n  + 3  = -o,~ L ~ • (A8) 

.=~ 2. Jo 0..) 

Finally. let us consider the expansion of g(q) = l o (qV/~) .  
On account of  the identity [7] 

f~ qJo bJo (a)l~ (b) + a J, (a)lo (b) (arl)Io (bq) dq (A9) 
aZ + b 2 

equation (A2) can be rewritten as 

Jo (2.) (22. 2 + r)  
ao = 2 Ii ; a.  (A10) 

Equations (A1) and (A10) yield 

\V z/o_-- 1 Jo 0,.)(22~ +]J) 


